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Abstract

The use of characterized excitation and choice of averaging techniques are fundamental to the estimation
of multiple input, multiple output (MIMO) frequency response function (FRF) data. The characteristics of
the excitation and averaging selected greatly influence the quality of the resulting MIMO-FRF
measurements. Presented is an overview of the basic excitation methods, such as random, periodic
random, pseudorandom, and burst random (random transient) as well as more advanced excitation
methods, such as burst-cyclic random, slow random, MOOZ random, and periodic chirps. The application
of these excitation and averaging methods is discussed relative to lightly or heavily damped systems,
systems with small non-linearities, FRF models, and peak to RMS (crest factor) as well as signal-to-noise
ratio (SNR) issues. Experimental examples are given to demonstrate the important issues.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Single- and multiple-input estimation of frequency response functions (FRFs) via shaker
excitation has become the mainstay of most mechanical structure measurements, particularly in
the automotive and aircraft industries. While there are appropriate occasions for the use of
deterministic excitation signals (sinusoids), the majority of these measurements are made using
broadband (random) excitation signals. These signals work well for moderate to heavily damped
mechanical structures which exhibit linear characteristics. When the mechanical structures are
very lightly damped, care must be taken to minimize the leakage error so that accurate frequency
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response function (FRF) data can be estimated in the vicinity of the modal frequencies of the
system. Frequently, when random excitation methods are compared to deterministic methods
(sinusoids), the comparisons are questionable since proper procedures for eliminating the leakage
error have not been followed.

Historically, a number of random excitation signals have been utilized, together with
appropriate digital signal processing techniques [1–5], to obtain accurate FRF data. The most
common random signal that is used in this situation is the pure random signal together with a
Hanning window. This signal is normally generated by the data acquisition system utilizing built-
in random signal generator(s) or via external random signal generator(s). While this approach
does not eliminate the source of leakage and the effect of applying the Hanning window must be
considered, this approach is normally considered as a baseline random excitation method for
estimating FRF measurements since this method is available with almost any data acquisition
system.

Other forms of random signals (pseudorandom, periodic random, burst random, etc.) utilize
more control or frequency shaping of the excitation signal(s) and generally require digital-to-
analog (DAC) converter(s). For this reason, some of these alternate methods are infrequently
available and therefore not used. This is unfortunate since these methods often yield a superior
FRF measurement in less total testing time.

When FRFs are measured on lightly damped systems, great care must be taken to eliminate the
leakage error. Regardless of the type of excitation signal hardware involved (random signal
generator or DAC), there are random excitation methods that can nearly eliminate the leakage
error. In some cases, one approach will be superior on the basis of minimizing the total test time
but on the basis of accurate, leakage-free FRFs, one of the methods will always work if test time
can be sacrificed. Note that these alternate forms of random excitation focus on eliminating the
source of leakage by customizing the random signal to match the requirements of fast Fourier
transform (FFT) that is used in converting from the time to frequency domain. The FFT requires
that the time domain signal must either be totally observed in the observation period (T) or be
periodic in the observation period (T). For leakage free FRF measurements, all of the input and
output signals must match one of these two requirements. Burst random excitation is an attempt
to match the first requirement; pseudo and periodic random excitations are attempts to match the
second requirement.

2. Traditional perspective

The concepts behind commonly used random excitation methods come from a number of
sources, including technical papers and vendor documentation. These concepts are briefly
reviewed in the following sections.

2.1. Random excitation methods

Inputs, which can be used to excite a system in order to determine frequency response functions
(FRFs), belong to one of the two classifications, random or deterministic [6–8]. Random signals
are widely utilized for general single- and multiple-input shaker testing when evaluating structures
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that are essentially linear. Signals of this form can only be defined by their statistical properties
over some time period. Any subset of the total time period is unique and no explicit mathematical
relationship can be formulated to describe the signal. Random signals can be further classified as
stationary or non-stationary. Stationary random signals are a special case where the statistical
properties of the random signals do not vary with respect to translations with time. Finally,
stationary random signals can be classified as ergodic or non-ergodic. A stationary random signal
is ergodic when a time average on any particular subset of the signal is the same for any arbitrary
subset of the random signal. All random signals, which are commonly used as input signals, fall
into the category of ergodic, stationary random signals. Deterministic signals can be characterized
directly by mathematical formula and the characteristic of the excitation signal can be computed
for any instance in time. While this is true for the theoretical signal sent to the exciter, it is only
approximately true for the actual excitation signal due to the amplifier/shaker/structure
interaction that is a function of the impedances of these electro-mechanical systems. Deterministic
signals can, nevertheless, be controlled more precisely and are frequently utilized in the
characterization of non-linear systems for this reason. The random classification of excitation
signals is the only signal type discussed in this paper.

The choice of input to be used to excite a system in order to determine frequency response
functions depends upon the characteristics of the system, the characteristics of the modal
parameter estimation, and the expected utilization of the data. The characterization of the system
is primarily concerned with the linearity of the system. As long as the system is linear, all input
forms should give the same expected value. Naturally, though, all real systems have some degree
of non-linearity. Deterministic input signals result in frequency response functions that are
dependent upon the signal level and type. A set of frequency response functions for different
signal levels can be used to document the non-linear characteristics of the system. Random input
signals, in the presence of non-linearities, result in a frequency response function that represents
the best linear representation of the non-linear characteristics for a given RMS level of random
signal input. For systems with small non-linearities, use of a random input will not differ greatly
from the use of a deterministic input.

The characterization of the modal parameter estimation is primarily concerned with the type of
mathematical model being used to represent the frequency response function. Generally, the
model is a linear summation based upon the modal parameters of the system. Unless the
mathematical representation of all non-linearities is known, the parameter estimation process
cannot properly weight the frequency response function data to include non-linear effects. For
this reason, random input signals are most commonly used to obtain the best linear estimate of
the frequency response function when a parameter estimation process using a linear model is to be
utilized.

The expected utilization of the data is concerned with the degree of detailed information
required by any post-processing task. For experimental modal analysis, this can range from
implicit modal vectors needed for trouble-shooting to explicit modal vectors used in an
orthogonality check. As more detail is required, input signals, both random and deterministic, will
need to match the system characteristics and parameter estimation characteristics more closely. In
all possible uses of frequency response function data, the conflicting requirements of the need for
accuracy, equipment availability, testing time, and testing cost will normally reduce the possible
choices of input signal.
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With respect to the reduction of the random and bias errors of the frequency response function,
random or deterministic signals can be utilized most effectively if the signals are periodic with
respect to the sample period or totally observable with respect to the sample period. If either of
these criteria are satisfied, regardless of signal type, the predominant bias error, specifically
leakage, will be minimized. If these criteria are not satisfied, the leakage error may become
significant. In either case, the random error will be a function of the signal-to-noise ratio and the
amount of averaging.

Many signals are appropriate for use in experimental modal analysis. Some of the most
commonly used random signals, used with single- and multiple-input shaker testing are described
in the following sections.

2.1.1. Pure random
The pure random signal is an ergodic, stationary random signal which has a Gaussian

probability distribution. In general, the frequency content of the signal contains energy at all
frequencies (not just integer multiples of the FFT frequency increment ðDf ¼ 1=TÞÞ: This
characteristic is shown in Fig. 1. This is undesirable since the frequency information between the
FFT frequencies is the cause of the leakage error. The pure random signal may be filtered (Fmin to
Fmax) to include only information in a frequency band of interest. The measured input spectrum of
the pure random signal, as with all random signals, will be altered by any impedance mismatch
between the system and the exciter. The number of RMS spectral averages used in the pure
random excitation approach is a function of the reduction of the random error and the need to
have a significant number of averages to be certain that all frequencies have been adequately
excited.
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Fig. 1. Signal energy content—pure random.
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2.1.2. Pseudorandom

The pseudorandom signal is an ergodic, stationary random signal consisting of energy content
only at integer multiples of the FFT frequency increment ðDf Þ: The frequency spectrum of this
signal is shaped to have constant amplitude with random phase. This characteristic is shown in
Fig. 2. If sufficient delay time is allowed in the measurement procedure for any transient response
to the initiation of the signal to decay (number of delay blocks), the resultant input and output
histories are periodic with respect to the sample period. The number of RMS spectral averages
used in the pseudorandom excitation approach is a function of the reduction of the random error.
In a noise-free environment, only one average (per input) may be necessary (provided the inputs
are not perfectly correlated at any frequency).

2.1.3. Periodic random
The periodic random signal is an ergodic, stationary random signal consisting only of integer

multiples of the FFT frequency increment. The frequency spectrum of this signal has random
amplitude and random phase distribution. This characteristic is shown in Fig. 3. For each
average, input signal(s) are created with random amplitude and random phase. The system is
excited with these input(s) in a repetitive cycle until the transient response to the change in
excitation signal decays (number of delay blocks). The input and response histories should then be
periodic with respect to the observation time (T) and are recorded as one RMS spectral average in
the total process. With each new average, a new history, random with respect to previous input
signals, is generated so that the resulting measurement will be completely randomized. The
number of RMS spectral averages used in the periodic random excitation approach is a function
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Fig. 2. Signal energy content—pseudorandom.
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of the reduction of the random error and the need to have a significant number of averages to be
certain that all frequencies have been adequately excited.

2.1.4. Burst random (random transient)
The burst random signal is neither a completely transient deterministic signal nor a completely

ergodic, stationary random signal but contains properties of both signal types. The frequency
spectrum of this signal has random amplitude and random phase distribution and contains energy
throughout the frequency spectrum. This characteristic is shown in Fig. 4. The difference between
this signal and the random signal is that the random transient history is truncated to zero after
some percentage of the observation time ðTÞ: Normally, an acceptable percentage is 50–80%. The
measurement procedure duplicates the random procedure but without the need to utilize a
window to reduce the leakage problem. The burst length (0–100%) is chosen so that the response
history decays to zero within the observation time ðTÞ: For light-to-moderate damped systems, the
response history will decay to zero very quickly due to the damping provided by the exciter/
amplifier system trying to maintain the input at zero (voltage feedback amplifier in the excitation
system). This damping, provided by the exciter/amplifier system, is often overlooked in the
analysis of the characteristics of this signal type. This exciter damping input, although not part of
the generated signal, is measured and it includes the variation of the input during the decay of the
response history. Therefore, since the input and response histories are totally observable within
the sample period, the system damping that will be computed from the measured FRF data is
unaffected by the exciter system. For very lightly damped systems, the burst length may have to be
shortened below 20%. This may yield an unacceptable signal-to-noise ratio (SNR). The number
of RMS spectral averages used in the burst random excitation approach is a function of the
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Fig. 3. Signal energy content—periodic random.
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reduction of the random error and the need to have a significant number of averages to be certain
that all frequencies have been adequately excited.

2.1.5. Slow random

The slow random signal is an ergodic, stationary random signal consisting only of integer
multiples of the FFT frequency increment. This signal behaves just like the pseudorandom signal
but without the frequency shaping of the amplitude. The slow random signal is generated by cyclic
averaging a random signal in order to produce digitally comb-filtered excitation signal(s) with the
proper characteristics. Note, frequency shaping is covered in Section 3.1.2.

2.1.6. MOOZ random

The MOOZ random signal is an ergodic, stationary random signal consisting only of integer
multiples of the FFT frequency increment frequency band limited to the frequency band of a
zoom fast Fourier transform (FFT) (Fmin to Fmax). The MOOZ (zoom spelled backwards) random
signal requires synchronization between the data acquisition and the digital-to-analog converter
(DAC). The MOOZ random signal is essentially a slow random excitation signal adjusted to
accommodate the frequencies of a zoom FFT.

2.1.7. Periodic chirp
The periodic chirp is a deterministic signal where a sinusoid is rapidly swept from Fmin to Fmax

within a single observation period ðTÞ: This signal is then repeated in a periodic fashion. While
this signal is not random in characteristic, it is often included in discussions of random excitation
since it has similar properties as pseudorandom.
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Fig. 4. Signal energy content—burst random.
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2.2. RMS spectral averaging concept

When frequency response function(s) are estimated using any of the current methods (H1; H2;
Hv; Hs; etc.), a number of averages are normally utilized. These averages are performed in the
frequency domain and are thus referred to as spectral averages. Since the functions that are
averaged are the auto- and cross-power spectra, the averaging that takes place is a least-squares
averaging procedure that is often referred to as an RMS averaging procedure. The purpose of
RMS spectral averages is to eliminate the noise that is random with respect to the averaging
procedure in order to reduce the variance on the resulting FRF estimate. This type of averaging
does not reduce the effects of bias errors like the leakage error.

2.3. Averaging methods—triggering issues

Generally, averaging is utilized primarily as a method to reduce the error in the estimate of the
frequency response function(s). This error can be broadly considered as noise on either the input
and/or the output and can be considered to the sum of random and bias components. Random
errors can be effectively minimized through the common approach to averaging, RMS spectral
averaging. However, bias errors cannot generally be effectively minimized through this form of
averaging alone.

The triggering criteria (choice) for signal averaging for measurement situations that include
random and bias errors is critical if both types of error are to be minimized. With this in mind, the
signal averaging useful to frequency response function measurements can be divided into three
classifications:

* Asynchronous (free-run)
* Synchronous (event triggered)
* Cyclic (contiguous)

These three classifications refer to the trigger and sampling relationships between sample
functions. In all three cases, RMS spectral averaging will be used to minimize the random portion
of the error. Only in the last case, specifically cyclic averaging, does the triggering method also
minimize the significant bias error caused by the discrete Fourier transform (DFT) of a truncated
time domain signal. This error is commonly known as the leakage error. Normally, cyclic
averaging will be applied in the time domain, but since the Fourier transform is a linear function,
there is no theoretical difference between the use of time histories or linear spectra. (Practically,
though, there are numerical precision considerations.)

2.3.1. Asynchronous signal averaging (free-run)

The classification of asynchronous signal averaging refers to the case where no known
relationship exists between individual sample functions. The FRF is estimated solely on the basis
of the intrinsic uniqueness of the frequency response function. In this case, the power spectra
(least-squares) approach to the estimate of frequency response must be used since no other way of
preserving phase and improving the estimate is available. In this situation, the trigger to initiate
digitization (sampling and quantization) takes place in a random fashion dependent only upon the
equipment availability. The triggering is said to be in a free-run mode.
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2.3.2. Synchronous signal averaging (event triggered)

The synchronous classification of signal averaging adds the additional constraint that each
sample function must be initiated with respect to a specific trigger condition (often the magnitude
and slope of the excitation). This means that the frequency response function can be formed as a
summation of ratios of X ðoÞ divided by F ðoÞ since phase is preserved. Even so, the power spectra
(least-squares) approach is still the preferred FRF estimation method due to the reduction of
variance and the usefulness of the ordinary coherence function. The ability to synchronize the
initiation of digitization allows for use of non-stationary or deterministic inputs with a resulting
increased signal-to-noise ratio and reduced leakage. Both of these improvements in the frequency
response function estimate are due to more of the input and output being observable in the limited
time window.

The synchronization takes place as a function of a trigger signal occurring in the input
(internally) or in some event related to the input (externally). An example of an internal trigger
would be the case where an impulsive input is used to estimate the frequency response. All sample
functions would be initiated when the input reached a certain amplitude and slope. A similar
example of an external trigger would be the case where the impulsive excitation to a speaker is
used to trigger the estimate of frequency response between two microphones in the sound field.
Again, all sample functions would be initiated when the trigger signal reached a certain amplitude
and scope.

2.3.3. Cyclic signal averaging (contiguous)
Cyclic signal averaging is often used with excitation characteristics in order to better match the

time domain input and output signals to the requirements of the FFT prior to the application of
the FFT. The cyclic classification of signal averaging involves the added constraint that the
digitization is coherent between sample functions. This means that the exact time between each
sample function is used to enhance the signal averaging process. Rather than trying to keep track
of elapsed time between sample functions, the normal procedure is to allow no time to elapse
between successive sample functions. This process can be described as a comb digital filter in the
frequency domain with the teeth of the comb at frequency increments dependent upon the
periodic nature of the sampling with respect to the event measured. The result is an attenuation of
the spectrum between the teeth not possible with other forms of averaging [9–11].

This form of signal averaging is very useful for filtering periodic components from a noisy
signal since the teeth of the filter are positioned at harmonics of the frequency of the sampling
reference signal. This is of particular importance in applications where it is desirable to extract
signals connected with various rotating members. This same form of signal averaging is
particularly useful for reducing leakage during frequency response measurements and also has
been used for evoked response measurements in biomedical studies.

A very common application of cyclic signal averaging is in the area of analysis of rotating
structures. In such an application, the peaks of the comb filter are positioned to match the
fundamental and harmonic frequencies of a particular rotating shaft or component (note that for
this case sampling is synchronous with angular position and not time). This is particularly
powerful, since in one measurement it is possible to enhance all of the possible frequencies
generated by the rotating member from a given data signal. With a zoom Fourier transform type
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of approach, one shaft frequency at a time can be examined depending upon the zoom power
necessary to extract the shaft frequencies from the surrounding noise.

The application of cyclic averaging to the estimation of frequency response functions can be
easily observed by noting the effects of cyclic averaging on a single frequency sinusoid. Figs. 5 and
6 represent the cyclic averaging of a sinusoid that is periodic with respect to the observation time
period T : Figs. 7 and 8 represent the cyclic averaging of a sinusoid that is aperiodic with respect to
the observation time period T : By comparing Fig. 6 with Fig. 8, the attenuation of the non-
periodic signal can be clearly observed.

2.3.3.1. Theory of cyclic averaging. In the application of cyclic averaging to frequency response
function estimates, the corresponding fundamental and harmonic frequencies that are enhanced
are the frequencies that occur at the integer multiples of Df : In this case, the spectra between each
Df is reduced with an associated reduction of the bias error called leakage.

The first observation to be noted is the relationship between the Fourier transform of a history
and the Fourier transform of a time-shifted history. In the averaging case, each history will be of
some finite time length T which is the observation period of the data. Note that this time period of
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observation T determines the fundamental frequency resolution Df of the spectra via the Rayleigh
criteria ðDf ¼ 1=TÞ:

The Fourier transform of a history is given by

X ðoÞ ¼
Z þN

�N

xðtÞe�jot dt: ð1Þ

Using the time shift theorem of the Fourier transform, the Fourier transform of the same history
that has been shifted in time by an amount t0 is

X ðoÞe�jot0 ¼
Z þN

�N

xðt þ t0Þe�jot dt: ð2Þ

For the case of a discrete Fourier transform, each frequency in the spectra is assumed to be an
integer multiple of the fundamental frequency Df ¼ 1=T : Making this substitution in Eq. (2)
ðo ¼ n2p=T with n as an integer) yields

X ðoÞe�jn
2p
T

t0 ¼
Z þN

�N

xðt þ t0Þe�jot dt: ð3Þ
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Note that in Eq. (3), the correction for the cases where t0 ¼ NT with N is an integer will be a unit
magnitude with zero phase. Therefore, if each history that is cyclic averaged occurs at a time shift,
with respect to the initial average, that is an integer multiple of the observation period T ; then the
correction due to the time shift does not effect the frequency domain characteristics of the
averaged result. All further discussion will assume that the time shift t0 will be an integer multiple
of the basic observation period T :

The signal averaging algorithm for histories averaged with a boxcar or uniform window is

%xðtÞ ¼
1

Nc

XNc�1

i¼0

xiðtÞ; ð4Þ

where xiðtÞ ¼ time history; average i; Nc ¼ number of cyclic averages; %xðtÞ ¼ cyclic-averaged
time history:

For the case where xðtÞ is continuous over the time period NcT ; the complex Fourier coefficients
of the cyclic-averaged time history become

Ck ¼
1

T

Z T

0
%xðtÞe�jot dt; Ck ¼

1

T

Z T

0

1

Nc

XNc�1

i¼0

xiðtÞe�jot dt: ð5; 6Þ

Finally,

Ck ¼
1

NcT

Z T

0

XNc�1

i¼0

xiðtÞe�jot dt: ð7Þ

Since xðtÞ is a continuous function, the sum of the integrals can be replaced with an integral
evaluated from 0 to NcT over the original function xðtÞ: Therefore,

Ck ¼
1

NcT

Z NcT

0

xðtÞe�jot dt: ð8Þ

The above equation indicates that the Fourier coefficients of the cyclic-averaged history (which
are spaced at Df ¼ 1=TÞ are the same Fourier coefficients from the original history (which are
spaced at Df ¼ 1=NcTÞ:

3. Current perspective

The current perspective on excitation methods is not limited to these historical excitation
methods. A number of new excitation methods are now possible that, based on constantly
evolving hardware and software, do not directly fit these historical definitions of excitation
methodology. In order to discuss these methods, several terminology issues must be clarified.

3.1. Terminology

A number of terminology issues have not been rigorously defined when excitation methods have
been described historically. The following terminology is important to the explanation of different
excitation methods together with the associated digital signal processing requirements.
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3.1.1. Signal type

Signal type refers to the basic form of the signal, such as random, impact, sinusoidal, or chirp.

3.1.2. Frequency shaping

Frequency shaping refers to any frequency domain constraint or characteristic that is applied to
the specific signal type. With respect to random excitation, a common frequency shaping is
pseudorandom. Other frequency shaping is commonly applied to sinusoids and chirps via the rate
at which the change of frequency and/or amplitude occurs. Additionally, there are also frequency-
dependent amplitude shaping approaches that may be used to improve dynamic range/numerical
conditioning characteristics of the measurements [12]. Impact excitation is commonly frequency
shaped by controlling the tip characteristic of the hammer.

3.1.3. Delay blocks
The number of contiguous blocks of excitation that take place without the associated input and

output data being acquired are referred to as the delay blocks ðNdÞ: This is normally associated
with an excitation technique that is periodic in nature. The delay blocks are needed in order to
give the transient response to any start or change in the periodic excitation to decay out of the
response signal(s) so that both the input(s) and output(s) are periodic with respect to any
observation period ðTÞ: It is this requirement that makes swept sinusoidal excitation methods
(analog swept or digitally stepped) so time consuming, particularly on lightly damped systems.
Each delay block is equal in length to the observation period ðTÞ and the number of delay blocks
is normally chosen as an integer. The number of delay blocks does not have to be an integer for all
excitation methods but, for the purposes of this paper and in common usage, is normally chosen
as an integer. The delay blocks are not recorded and are not used in the estimation of the FRFs.

3.1.4. Capture blocks

The number of capture blocks refers to the number of contiguous blocks of time data
(excitation (input) and response (output)) that are recorded or captured for each average ðNcÞ:
Each group of contiguous capture blocks is used as the time domain data contributing to one
RMS spectral average that contributes to the estimate of the FRF measurements.

3.1.5. Window function
The window function refers to the digital signal processing, time domain weighting function

that is applied to the capture blocks. The application of the window function to the capture blocks
is on the basis of the group of contiguous capture blocks not on each capture block individually.

3.1.6. Average (ensemble)
The average or ensemble refers to the total collection of contiguous time blocks that contribute

to each RMS spectral average. The total time of each average is equal to the sum of the number of
delay blocks ðNdÞ plus the number of capture blocks ðNcÞ times the observation period ðTÞ which
is the same for all delay and capture blocks. The number of averages ðNavgÞ refers to the number of
these contiguous collections of time blocks and is, therefore, the same as the number of RMS
spectral averages.
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3.1.7. Periodic

If the excitation signal is repeated for each delay and capture block, the signal is referred to as
periodic. This classification is consistent with the definition of a periodic function and includes
typical examples of sinusoids and chirps as well as a random signal that is repeated on the basis of
the observation period ðTÞ: The periodic classification does not define whether the same signal is
repeated for each successive group of contiguous delay and capture blocks.

3.1.8. Burst length
Burst length is the percentage (0–100%) of the average or ensemble time that the excitation

signal is present. Burst length is normally adjusted in order to achieve a signal that is a totally
observed transient. The decay of the signal is a function of the system damping and the
characteristics of the excitation hardware. Burst length can be defined as the percentage of the
total number of contiguous delay and capture blocks or of a percentage of just the capture blocks.
For the purpose of this paper, the burst length refers to the percentage of the total number of
contiguous delay and capture blocks.

3.1.9. RMS spectral averages
The number of RMS spectral averages is the number of auto- and cross-spectra that are

averaged together to estimate the FRF measurements. The actual amount of test time
contributing to each RMS spectral average is a function of the number of contiguous delay
and capture blocks.

In order to clarify the preceding terminology, Fig. 9 is a schematic representation of the number
of contiguous blocks of time domain data contributing to one RMS spectral average. In this
example, the two blocks marked ‘‘D’’ represent delay blocks and the four blocks marked ‘‘C’’
represent capture blocks. The total time for each RMS spectral average is, therefore, six
contiguous blocks of time data (6 � T seconds of data).

Burst Length (%)
0 100

2 3 4 5

Window Function

60 1

Number of Contiguous Time Blocks (6T)

D D C C C C

Fig. 9. Total contiguous time per RMS spectral average (ensemble).
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3.2. Excitation methods: old, new, and hybrid

The excitation methods demonstrated in the following example include traditional methods
(pure, periodic, pseudo, and burst random) [7,8], as well as methods that have been recently
documented (burst random with cyclic averaging) [9,10]. Several of the methods are hybrid
methods involving combinations of burst random and pseudorandom, burst random, and
periodic random together with cyclic averaging. These hybrid methods have not previously been
documented. Fig. 10 shows the energy content of a hybrid excitation method that combines
pseudorandom with burst random. This excitation signal would be combined with cyclic
averaging.

Fig. 11 shows the energy content of a hybrid excitation method that combines periodic random
with burst random. This excitation signal would be combined with cyclic averaging.

4. Structural example

The following example presents a single FRF measurement on an H-frame test structure in a
test lab environment as a representative example. The configuration of the test involved two
shaker locations (inputs) and eight response accelerometers (outputs). The test results are
representative of all data taken on the H-frame structure. This H-frame test structure is very
lightly damped and has been the subject of many previous studies.

For all FRF measurement cases, the same test configuration was used. Sensors were installed
and left in place; no additions or changes were made to the test configuration other than altering
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Fig. 10. Signal energy content—burst pseudorandom.
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the excitation, averaging and digital signal processing parameters. Therefore, any changes in the
FRF measurements are assumed to be due to the change in measurement technique and not due
to a test set-up variation. The test results were repeated to be certain that the results are
representative.

All FRF measurements are estimated using the H1 estimation algorithm using 1024 spectral
(frequency) lines of information. The frequency bandwidth is from 0 to 250 Hz for the 1024
spectral lines; only the first 80% of the spectral lines (0–200 Hz) are displayed in order to exclude
the data affected by the anti-aliasing filters.

The FRF data are plotted with phase above log magnitude. The log magnitude portion of the
plot also contains the relevant multiple coherence plotted on a linear scale in the background. The
log magnitude scaling is annotated on the left side of the plot and the multiple coherence scaling is
annotated on the right side of the plot.

Fourteen representative cases were measured on this structure. The relevant excitation and
digital signal processing characteristics of each case are shown in Table 1. Keep in mind that the
focus of this measurement exercise is to demonstrate the influence of the various measurement
parameters on the qualitative nature of the resulting FRF. Because this exercise utilizes a MIMO-
FRF formulation, the multiple coherence must be used. (Ordinary coherence is not meaningful.)
As such the anti-resonance near 132 Hz demonstrates significant variation without apparent
change in the multiple coherence. This occurs because there is a large mode nearby, but almost
completely uncoupled from the input chosen for presentation. This anomaly may be safely
ignored as it does not affect the point or conclusion of the exercise.

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

Spectral line (bin)

M
ag

ni
tu

de

Fig. 11. Signal energy content—burst periodic random.
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Case 1 (Fig. 12) is considered a baseline case since this is a very popular method for making a
FRF measurement and it can be easily made on all data acquisition equipment. However, it is
clear that in this measurement situation, there is a significant drop in the multiple coherence
function at frequencies consistent with the peaks in the FRF measurement. This characteristic
drop in multiple (or ordinary) coherence is often an indication of a leakage problem. This can be

Table 1

Test cases—excitation/averaging/DSP parameters

Case Signal Frequency Periodic Burst Window Nd Nc Navg Total

type shaping function length function

Case 1 Random No No No Hanning 0 1 20 20

Case 2 Random No No No Hanning 0 5 4 20

Case 3 Random No No Yes (75%) Uniform 0 5 4 20

Case 4 Random Pseudo No No Uniform 4 1 4 20

Case 5 Random No Yes No Uniform 4 1 4 20

Case 6 Random Pseudo No No Uniform 3 1 5 20

Case 7 Random No Yes No Uniform 3 1 5 20

Case 8 Random Pseudo No Yes (75%) Uniform 0 5 4 20

Case 9 Random No Yes Yes (75%) Uniform 0 5 4 20

Case 10 Random No No Yes (75%) Uniform 0 8 12 20

Case 11 Random No No No Hanning 0 1 96 96

Case 12 Random No No No Hanning 0 8 12 96

Case 13 Random Pseudo No No Uniform 3 2 4 20

Case 14 Random No Yes No Uniform 3 2 4 20
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Fig. 12. Case 1: random excitation with Hann window.
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confirmed if a leakage reduction method reduces or eliminates the problem when the measurement
is repeated. In all subsequent cases, the test configuration was not altered in any way—data was
acquired simply using different excitation, averaging, and digital signal processing combinations.

Case 2 (Fig. 13) demonstrates an improvement over Case 1 when the same total measurement
time is used but cyclic averaging is used to reduce the leakage error. Case 3 (Fig. 14) further

0

180

P
ha

se
 (

D
eg

)

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−3

10
−2

10
−1

10
0

Frequency (Hertz)

M
ag

ni
tu

de
 (

g/
lb

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
oh

er
en

ce

Fig. 13. Case 2: random excitation with Hann window and cyclic averaging.
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Fig. 14. Case 3: burst random excitation with cyclic averaging.
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demonstrates that burst random with cyclic averaging improves the measurement further. Again
the total measurement time remains the same.

Cases 4–7 (Figs. 15–18) demonstrate the quality of FRF measurements that can be achieved
with pseudo and periodic random excitation methods with very few RMS spectral averages.
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Fig. 15. Case 4: pseudorandom excitation.
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Fig. 16. Case 5: periodic random excitation.
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Cases 8 and 9 (Figs. 19 and 20) are hybrid techniques involving the combination of burst
random with pseudo and periodic random excitation together with cyclic averaging.

Case 10 (Fig. 21) demonstrates that Case 3 can be marginally improved with more averages,
both cyclic and RMS spectral averages. However, Case 11 (Fig. 22) demonstrates that Case 1
(random with Hann window) cannot be improved by adding RMS spectral averages. This is a
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Fig. 17. Case 6: Pseudorandom excitation.
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Fig. 18. Case 7: periodic random excitation.
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popular misconception that adding RMS spectral averages will improve the FRF estimate. This is
clearly not true for this case.

Case 12 (Fig. 23) demonstrates that additional cyclic averages, together with RMS spectral
averages, is an improvement over Case 2 but the improvement is not significant considering the
additional measurement time.
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Fig. 19. Case 8: burst pseudorandom excitation with cyclic averaging.
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Fig. 20. Case 9: burst periodic random excitation with cyclic averaging.
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Finally, Cases 13 and 14 (Figs. 24 and 25) demonstrate that, when pseudo and periodic random
excitation is coupled with cyclic averaging, a nearly perfect (with respect to the removal of the
leakage error) FRF measurement results. Note also that in almost every case where high-quality
FRF measurements have been achieved, window functions are not required so correction for the
window characteristics is unnecessary.
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Fig. 21. Case 10: burst random excitation with cyclic averaging.
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Fig. 22. Case 11: random excitation with Hann window.
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It is clear that in many of the measurement cases, the multiple coherence can be improved
dramatically using simple excitation, averaging and digital signal processing methods. Note that,
as the multiple coherence improves, dramatic changes in the FRF magnitude accompany the
improvement (factors of 2 to more than 10). When estimating modal parameters, the frequency
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Fig. 23. Case 12: random excitation with Hann window and cyclic averaging.
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Fig. 24. Case 13: pseudorandom excitation with cyclic averaging.
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and mode shape would probably be estimated reasonably in all cases. However, the damping and
modal scaling would be distorted (over estimating damping and under estimating modal scaling).
Using these results for model prediction or FE correction would bias the predicted results.

5. Conclusions

The most important conclusion that can be drawn from the results of this measurement exercise
on a lightly damped mechanical system is that quality of the data in a given test situation is an
indirect function of measurement time or number of averages but is a direct function of
measurement technique. The leakage problem associated with utilizing fast Fourier transform
(FFT) methodology to estimate frequency response functions on a mechanical system with light
damping is a serious problem that can be managed with proper measurement techniques, like
periodic and pseudorandom excitation or cyclic averaging with burst random excitation. Hybrid
techniques demonstrated in this paper clearly show that a number of measurement techniques are
acceptable but some commonly used techniques are clearly unacceptable.

It is also important to note that while ordinary/multiple coherence can indicate a variety of
input/output problems, a drop in the ordinary/multiple coherence function, at the same frequency
as a lightly damped peak in the frequency response function, is often a direct indicator of a
leakage problem. Frequently, comparisons are made between results obtained with narrowband
(sinusoid) excitation and broadband (random) excitation when the ordinary/multiple coherence
function clearly indicates a potential leakage problem. It is important that good measurement
technique be an integral part of such comparisons.
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Fig. 25. Case 14: periodic random excitation with cyclic averaging.
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Appendix A. Nomenclature

Navg number of RMS spectral averages
Nc number of cyclic averages
Nd number of periodic delay blocks
Ni number of inputs
No number of outputs
Fmin minimum frequency (Hz)
Fmax maximum frequency (Hz)
Df frequency resolution (Hz)
T observation period (s)
X ðoÞ linear spectrum of the response
FðoÞ linear spectrum of the excitation
H1 FRF estimator—response error minimized
H2 FRF estimator—excitation error minimized
Hv FRF estimator—both excitation and response error minimized
Hs FRF estimator—noise floor weighted form of Hv
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